Subscribe to Blog
Email Address
 
Search for cutting returned 61 results.
Pages:(7) 1 2 3 4 [5] 6 7

HSMAdvisor Integration with CADCAM

November 1, 2013, 9:53 pm by Eldar Gerfanov (Admin)

NOTE. THIS INTEGRATION MECHANISM HAS BEEN DEPRECIATED AND REMOVED FROM HSMADVISOR.

PLEASE CHECK OUT OUR MASTERCAM X9 AND MASTERCAM 2017 HOOKS FOR MASTERCAM

One of the most requested features in HSMAdvisor has long been integration with various CAD/CAM solutions available on the market.

There are two possible ways of achieving said task.

First way: using CAD/CAM API to create plugins to enable HSMAdvisor to "talk to" various software packages.
This road could produce the best results, however implementing it would be laborous and results not always very convinient to use.
Also developer(me) would have to create plugins for many dozens of cad/cam software packages. Muliply that by the fact that with each CADCAM release, a new version of plugin would need to be produced, tested and debugged. This work is for a whole software department and would call for a product far more expensive than what a lot of my customers could afford.

Second way: Grab tool, speed and feed data directly from the CAD/CAM window, process it and then update required information when the calculation is done.
This solution is easyer to implement and could prove to be the most convinient for user as well.

Need i tell you that i have chosen to go the easy way?

Without further delay let me introduce the first Speed and Feed calculator that can be integrated with a CAD/CAM solution by a user himself!

This is How it Works

Step One: User launches CAD/CAM solution. We will use MasterCAM x2 in our case.

A toolpath is programmed the usual way, a proper tool is selected and when it is time to enter your speed and feed data you launch HSMAdvisor.

On FSWizard page you first select Read More 

Ways in which High Speed Machining (HSM ) works

October 12, 2013, 11:32 am by Eldar Gerfanov (Admin)

Lately there have been a lot of really interesting HSM topics on PracticalMachinist forums.

In one of them a guy who owns his own resharpening business posted a video of his endmill milling a block of D2 hardened to over 60 RC.
The forum topic is located here First try on D2 62Rc(video)

Here is his post so you know what we are talking about:

Quote:
In an effort to perfect our speeds and feeds while hardmilling, this is the first try. Its not right yet, but far from a failure. I apologize for the language at the end, but I do not edit my videos. The endmill was a reground garr VRX at .353 diameter. Parameters were 750 sfm, .018 radial, .300 axial and .004 ipt.
The next run will be at 650 sfm, .006 ipt using a mist sprayer. Also, any small areas will be blocked off to be ran at lower speeds to allow cooling time for the cutter. Just a note for anyone using a Mag Fadal, The E-stop button is not quick enough, use feed hold. The endmill was badly worn on the corners, but not broken, and will be resharpened and used again.

In the ensuing discussion i posted my own take on how and why HSM works

Quote:
HSM works in many ways.

1) Reduced cutting time per edge per revolution allows it to cool down more.
2) Chip thinning allows to increase chipload (advancement per tooth per revolution)
3) Increased depth of cut combined with shallow radial positively affects deflection. Tool bends less as it is more rigid towards the tool holder.
4) Higher cutting speed actually reduces cutting forces as heat generated in the cutting zone makes it easier to shear off a layer of metal. Yet because the time of contact is so small, most of the heat is carried away with the chip.
5) Higher RPM also allows to get rid of hot chips faster thus further reducing heat transferred to the tool.
6) Higher feedrate actually reduces relative cutting speed.
7) At high axial engagements more than one flute is in contact with the workpiece at different points along the axis of the tool. This too helps combat vibrations and chatter.
8) You are using more of the tool than just its tip, so technically you can do more work with one tool before it gets dull.
9) lastly it looks cool as hell and is very impressive. Whenever we know visitors or bosses are coming we try to make sure some HSM is going on even if application does not merit that
I am not sure if the air that is moved by the endmill is doing much, but i suspect he didn't mean exactly that.

 

Working with HSMAdvisor myCutDB Tool Library

September 25, 2013, 9:09 pm by Eldar Gerfanov (Admin)

I have been asked to create a tutorial on how to work with the tool library, so here it is.

myCut Tool Database is quite a unique thing.

It not only contains all of your tools, but also each and every tool can have multiple operations or "Cuts" attached to it.

Everything is very simple.

Database contains Libraries

Libraries contain Tools

And Tools contain Cuts


Each entity behaves according to specific rules and "knows" specific kind of data.

Please read more to learn how it all works.Read More 

Calculating cutting parameters for custom or form tooling inside HSMAdvisor

September 10, 2013, 5:00 pm by Eldar Gerfanov (Admin)

If you are working in mold-making, prototyping or even in a job shop you have had to use unusual form tooling before in your life.

Form tooling is often used to machine undercuts and other features on regular 3 axis machines that would otherwise require a multi axis machining centre or are not machinable o at all.

The classical example of a form tool is a tear-drop ball mil, also known as a "lollipop". It has a tip with a certain diameter and a much smaller shank that produces enough clearance to machine undercuts on straight walls. It can also be used to regular surface finishing and 2d milling.

Another example is a T-slot cutter that is used to produce key-ways and t- slots

The main thing to consider when machining with reduced shank end mils is deflection and torque.

While deflection is especially dangerous for long tools, torque becomes much more important for tools with severely reduced shank.

Torque required to break a tool is directly proportional to the diameter of its shank.

And when shank diameter is much smaller than the tip diameter it does not matter how short that weak portion is: unless you compensate for it you will snap the tool.

The first thing that crosses the mind in many such cases is "I gotta run this tool very slow". It may take forever, but in many cases job gets somewhat done.

Contrary to that many experienced machinists have been proponents of different approach. Instead of reducing feed rate to the point of rubbing and below, it is much more productive to reduce cutter engagement if possible and leave feed rate settings largely unchanged.

Trying to keep proper chip load is even more important when machining work-hardenable materials like stainless steel and titanium. In those cases rubbing is not just unproductive, it leads to a very premature, in many cases instantaneous tool failure.

Just how much of a cut is possible to take in each particular case is the black magic that separates beginners from seasoned pros.

Not to worry though

Here is an example Read More 

An old trick to reduce or prevent chatter in extension holders

August 23, 2013, 11:36 am by Eldar Gerfanov (Admin)

Shrink fit holders and extensions often come with a big through hole.

Its primary use is to allow the shank be knoked out from he back should the tool ever snap off. It is also used to supply coolant for CTS machines.

Unfortunately said hole affects rigidity of the holder making it more likely to chatter leaving bad surface finish and badly affecting tool life.

There is however an old trick to prevent or minimize the chatter.

All you have to do is pack that hole with some thick grease.

Don't forget to cap off the oppening so that grease does not escape when the tool is spinning.

Here are several photos of surface finish before and after grease application. All cutting parameters were exactly the same in both cases.

before. deep chatter marks 13772750243945.jpg after. surface finish is ideal 13772750375326.jpg tool in extension holder 13772748879991.jpg showing capped hole 13772749147372.jpg

How to properly choose cutting parameters in less than ideal conditions

July 13, 2013, 4:40 pm by Eldar Gerfanov (Admin)

We all have manufacturer speed & feed charts and have used their recommendations.

But sometimes those charts just don't apply.

For example manufacturer charts assume you are using their endmills at a certain stickout length, flute length and at a certain depth of cut.

But in the real life you rarely match all these conditions.
Sometimes you need to use longer endmill. Sometimes your flute is longer than what manufacturer gave you speeds and feed for.

What i am trying to say is that whenever your real life conditions differ from "normal" you "need to adjust accordingly".
In fact this is what is printed below many charts.

Too bad not many sources tell you how and what to adjust.

While failure to adjust cutting parameters often leads to chatter, poor surface finish and even tool breakage, one of the biggest mistakes people do when machining is Read More 

FSWizard is now available on iOS and Android

July 6, 2013, 11:08 pm by Eldar Gerfanov (Admin)

The best online cnc speed and feed calculator FSWizard is now available as an app for iPhone and Android.

CNC Milling and Turning Speed and Feed Calculator For Machinists on the palm of your hand!

Go To FSWizard Online Calculator

Note: Certain HSMAdvisor Licenses Include FSWizard PRO For Android for Free!!
Check out our HSMAdvisor Web Store for Details

Absolutely the best handheld CNC machinist's speed and feed calculator around.
Calculate cutting conditions simply by choosing your work and tool material.
No need to know any numbers. 
FSWizard will automatically use recommended cutting speed and chipload.

* Made by a machinist for machinists * 

Improve productivity and optimize cutter life.

* Milling, Drilling, Tapping and Turning
* Suggests optimum cutting depth and balances cutting parameters.
* Supports Chip thinning and HSM machining.
* Required Power estimation, Recommended Depth/Width of Cut for extra-long cutters.
* Built in tap drill calculator to calculate not only cutting speed and feed , but also drill dia in accordance with desired thread engagement.
* Drill and Tap charts for both imperial and metric systems.
* Oblique Triangle Calculator
* Fillet Calculator will find tangent points to a circle and two lines
* Machinists Bolt Hole Circle and Line Calculators

It just does it all.

*Milling Tools: Solid EndMill, Indexed End Mill and FaceMill, Solid and Indexable drills
*Drilling Tools: Jobber Drill, Hi-Performance Parabolic Drill, Spade Drill, Reamer
*Turning Tools: Profiling and Grooving

Please try the Free FSWizard Lite first to confirm your device capability.
Also huge thanks to those who go through the trouble and leave a review.
Good reviews mean more sales and more incentive for me to further improve on this app.

FSWizard Lite and FSWizard PRO are iPhone/Android machinist calculators that do not require internet connection.
PRO version has all the latest material lists and speed and feed technology.

Lite version has all the same features, but it only has tool steel, mild steel and aluminum in its material list. It still has all the tool types and tool materials found in online and standalone versions
Both Lite and Pro  versions have unlocked tapping data.

Lite versions have limited geometry calculators.

This app is intended not to replace but to complement my much more powerful standalone Windows application called HSMAdvisor.

FSWizard LITE

Free

Get it on Google Play

FSWizard PRO $49.99

Get it on Google Play

FSWizard PRO $39.99

Multiplatform License

for iOS and Android

Purchase through PayPal

2013-07-06_15-51-40.png 2013-07-06_15-51-40.png 2013-07-06_15-51-50.png 2013-07-06_15-51-50.png 2013-07-06_15-52-04.png 2013-07-06_15-52-04.png 2013-07-06_16-03-27.png 2013-07-06_16-03-27.png 2013-07-06_15-52-51.png 2013-07-06_15-52-51.png 2013-07-06_15-52-27.png 2013-07-06_15-52-27.png Fillet Calculator 2013-10-08_21-57-55.png Oblique Triangle Calculator 2013-08-18_22-11-18.png Pipe Taps 2013-08-20_22-32-00.png New Layout 2013-08-18_22-10-12.png Bolt Hole calc 2013-11-05_20-19-24.png Bolt Hole Line Calculator 2014-03-16_22-40-13.png Bolt Hole Particial Calculator 2014-02-09_22-13-27.png SHCS Reference FSWSHCS.PNG 82Deg FHS Reference FSW82degFHS.PNG

Numbers Behind High Speed Machining (HSM)

May 28, 2013, 7:01 am by Eldar Gerfanov (Admin)

HSM or High Speed Machining is becoming more and more popular each day.
Many of us have seen those youtube videos where endmlls remove large amounts of material at high speeds/feeds.

While definitions of HSM may vary between tool manufacturers and even individual shops, the physics behind it remain the same.

In this article i would like to explore flat endmills.

HSM is not about ramping up your speed/feed overrides to 200% and puling out your smartphone to record another youtube-worth video.

What is HSM?

HSM is a complex of programming, machining and tooling techniques aimed at radical increase of productivity.

Programming

The cornerstone of HSM is low radial and high axial engagement of an endmill with the workpiece.

There are many CAD/CAM systems that allow you to create HSM tool-paths. Mastercam's Dynamic milling and SurfCAM's Truemill are some of them.

When radial cutter engagement with the material is smaller than the radius of the tool an interesting thing happens.
Chip load- the distance the tool advances per cutter revolution per tooth- does not equal the actual chip thickness anymore.
Chip thinning mainly happens at radial engagements below 30% of the diameter.

Radial Engagement vs chip thinning factor
100%             

1.0

50% 1.0
30% 1.091
25% 1.212

 

20% 1.641
15% 2.1
10% 4.375
5% 6.882

In order to get compensated chipload you need to multiply recommended by manufacturer chipload by the chip thinning factor.

Usual Radial Engagement for HSM toolpaths however is between 5 and 15%.

Axial depth of cut varies depending on geometry, but Read More 

Radial Chip Thinning Engagement_Angle-Chip Thinning.PNG HSMAdvisor Screenshot 0.750in 4FL Carbide TiAlN coated Solid HP End Mill.JPG

Pre-Hard Stainless & HSM Advisor Test

May 19, 2013, 11:37 am by Eldar Gerfanov (Admin)

Sevaral weeks ago i saw a post on CNCZone.

A HSMadvisor user Peter Neil used it to calculate cutting conditions for cutting a block of pre-hardened stainless steel.
His machine was Tormach.

Here is an exact copy-paste from that forum post:
_____________________________________________________________________________________

Did a test cut on the Tormach today using feeds & speeds from the latest version of the excellent HSM advisor.
To make it interesting, I did the cut using some 1.2085 pre-hard Stainless Steel as I have plenty of stock of it and have a job in mind for this, and wanted to see how it cut on the Tormach.
The material is like a stainless P20, at 16% Chrome/1% Nickel & 0.5% Sulphur (which makes it slightly free-er machining) and is hardened to around 33-35 Rockwell C, so I used the HSM advisor guidelines for machining P20 rather than Stainless. Cutter was a 10mm 4-flute Carbide TiAlN coated EM.

So...... ticking the HSM/Chip thinning option I got a speed of 5120 and feed of 2214mm/minute( 87 IPM). I used a DOC of 10mm and WOC of 0.5mm/0.020" - and turned off the flood cooling to machine it completely dry. The finish pass on the 1st level was 15mm DOC and 0.5mm WOC and slightly lower speeds/feeds.

Loaded up a 40mm x 63mm block , pressed the start button, and it went from this....





...to this!

Read More 

HSMAdvisor 0.200 Is available for download

May 12, 2013, 11:10 pm by Eldar Gerfanov (Admin)

This HSMAdvisor v0.200 release is a major step forward.

Aside from major rewrites that i did to improve stability of the code there are also new features that will improve user experience 
and move us one step ahead towards making it the best tool for machinists. 

New Features

  • Circular Interpolation feedrate compensation
    Now you can get compensated feedrates for milling inside and outside round features.
  • HSM and Chip Thinning 
    are now two separate check boxes.
    Chip thinning allows to compensate for thinning chip thickness at low radial and axial engagements.
    HSM allows to increase cutting speed when chip thinning occurs. 
  • Manufacturer's Speed and Chipload input
    For when you need to enter manufacturer recommended S&F values.
  • .NET 2.0 Framework 
    Starting from this release i have downgraded required framework version from 4.0 to 2.0
    This will allow us to target wider audience as it immediately drops requirements for Windows computers.
  • UNEF and UNS threads
    New thread sizes were added into the Threading section. 
  • Drill Chart 
    was expanded to drills up to 1.5" in diameter

Bugs Fixed

All the existing bugs were tackled when code re-write happened.
I took a long time testing and fixing all of the problem and suspect areas, so at this poing it should be bug-free.

HSMAdvisor_v0.200 program picture.JPG HSMAdvisor_v0.200 program picture.JPG
Pages:(7) 1 2 3 4 [5] 6 7
Sing In

© 2009-2022 Eldar Gerfanov. All Rights Reserved.
© 2009 Eldar Gerfanov. Materials on this site are presented as is and are mostly for educational use.

You may freely reproduce information presented herein without any consent from me, provided you include link to this site.
In case when i am not the copyright holder, you may want to contact proper owner of material. Anyway, they are freely available on the Internet.
If you hold the copyright right for any of the materials on this site and want them removed, please contact me here