Subscribe to Blog
Email Address
 

Lately there have been a lot of really interesting HSM topics on PracticalMachinist forums.

In one of them a guy who owns his own resharpening business posted a video of his endmill milling a block of D2 hardened to over 60 RC.
The forum topic is located here First try on D2 62Rc(video)

Here is his post so you know what we are talking about:

Quote:
In an effort to perfect our speeds and feeds while hardmilling, this is the first try. Its not right yet, but far from a failure. I apologize for the language at the end, but I do not edit my videos. The endmill was a reground garr VRX at .353 diameter. Parameters were 750 sfm, .018 radial, .300 axial and .004 ipt.
The next run will be at 650 sfm, .006 ipt using a mist sprayer. Also, any small areas will be blocked off to be ran at lower speeds to allow cooling time for the cutter. Just a note for anyone using a Mag Fadal, The E-stop button is not quick enough, use feed hold. The endmill was badly worn on the corners, but not broken, and will be resharpened and used again.

In the ensuing discussion i posted my own take on how and why HSM works

Quote:
HSM works in many ways.

1) Reduced cutting time per edge per revolution allows it to cool down more.
2) Chip thinning allows to increase chipload (advancement per tooth per revolution)
3) Increased depth of cut combined with shallow radial positively affects deflection. Tool bends less as it is more rigid towards the tool holder.
4) Higher cutting speed actually reduces cutting forces as heat generated in the cutting zone makes it easier to shear off a layer of metal. Yet because the time of contact is so small, most of the heat is carried away with the chip.
5) Higher RPM also allows to get rid of hot chips faster thus further reducing heat transferred to the tool.
6) Higher feedrate actually reduces relative cutting speed.
7) At high axial engagements more than one flute is in contact with the workpiece at different points along the axis of the tool. This too helps combat vibrations and chatter.
8) You are using more of the tool than just its tip, so technically you can do more work with one tool before it gets dull.
9) lastly it looks cool as hell and is very impressive. Whenever we know visitors or bosses are coming we try to make sure some HSM is going on even if application does not merit that
I am not sure if the air that is moved by the endmill is doing much, but i suspect he didn't mean exactly that.

 

--Eldar Gerfanov

Comments:

No Comments posted yet, be the first one!

New Comment to: Ways in which High Speed Machining (HSM ) works

Name: *
Security Code:
*
 
© 200908:53:46-2016 Eldar Gerfanov. All Rights Reserved.
© 2009 Eldar Gerfanov. Materials on this site are presented as is and are mostly for educational use. You may freely reproduce information presented herein without any consent from me, provided you include link to this site.
In case when i am not the copyright holder, you may want to contact proper owner of material. Anyway, they are freely available on the Internet.
If you hold the copyright right for any of the materials on this site and want them removed, please contact me here